Сформулируйте Закон Сохранения Электрического Заряда Приведите Примеры, Подтверждающие Этот Закон Всегда Ли Справедлив Закон Сохранения Электрического Заряда?

Как известно, все тела состоят из атомов, в состав которых входят электроны и протоны. Количество электронов и протонов в составе незаряженного тела одинаковое. Поэтому такое тело не проявляет электрического действия на другие тела. Если же два тела находятся в тесном контакте (при натирании, сжатии, ударе и т.п.), то электроны, связанные с атомами значительно слабее, чем протоны, переходят с одного тела на другое.

Многие физические явления, наблюдаемые в природе и окружающей нас жизни, не могут быть объяснены только на основе законов механики, молекулярно-кинетической теории и термодинамики. В этих явлениях проявляются силы, действующие между телами на расстоянии, причем эти силы не зависят от масс взаимодействующих тел и, следовательно, не являются гравитационными. Эти силы называют электромагнитными силами .

Закон сохранения заряда подтверждается и простыми опытами по электризации тел. Укрепим на стержне электромера металлический диск и, положив на него прослойку из сукна, поставим сверху еще один такой же диск, но с ручкой из диэлектрика. Совершив несколько движений верхним диском по изоляционной прослойке, уберем его в сторону. Мы увидим, что стрелка электромера отклонится, свидетельствуя о появлении на сукне и соприкасающемся с ним диске электрического заряда. Далее прикоснемся вторым диском (которым мы терли о сукно) к стерж­ню второго электромера. Стрелка этого электромера отклонится примерно на такой же угол, что и стрелка первого электромера. Это означает, что при электризации оба диска получили одинако­вый по модулю заряд. Что можно сказать о знаках этих зарядов? Для ответа на этот вопрос завер­шим опыт, соединив электромеры металлическим стержнем. Мы увидим, как стрелки приборов опустятся вниз. Нейтрализация зарядов свидетельствует о том, что они были равны по модулю, но противоположны по знаку (и, следовательно, в сумме давали нуль).

Одним из подтверждений закона сохранения электрического заряда служит строгое равенство (по абсолютной величине) электрических зарядов электрона и протона. Изучение движения атомов (молекул) и микроскопических тел в электрических полях подтверждает электронейтральность вещества и, соответственно, равенство зарядов электрона и протона (и электронейтральность ней­трона) с точностью до 10 -21 .

Заряды в данном случае не появились из неоткуда. Они уже были внутри проводящих дисков. Только они были скомпенсированы между собой. Мы просто их разделили. Поместив при этом на разные диски. Когда же мы соединили стержни электрометров, то заряды вновь с компенсировались между собой. О чем свидетельствовали стрелки.

После того как мы уберем верхний диск электрометр покажет наличие заряда. У него отклонится стрелка. Далее мы возьмём диск и коснемся им стержня второго электрометра. У него также стрелка отклонится, указывая на наличие заряда. Хотя заряд будет противоположного знака. Далее если мы соединим стержни электрометров, то стрелки вернутся в исходное положение. То есть заряды скомпенсируют друг друга.

Вам может понравиться =>  Что Положено Вдове Ликвидатора Чаэс Болезнь Лучевкя Связана

Сформулируйте Закон Сохранения Электрического Заряда Приведите Примеры, Подтверждающие Этот Закон Всегда Ли Справедлив Закон Сохранения Электрического Заряда?

Элементарные частицы могут иметь эл. заряд, тогда они называются заряженными;
— взаимодействуют друг с другом с силами, которые зависят от расстояния между частицами, но превышают во много раз силы взаимного тяготения (это взаимодействие называется электромагнитным).

Электрический заряд — физическая величина, определяет интенсивность электромагнитных взаимодействий.
Существует 2 знака эл.зарядов: положительный и отрицательный.
Частицы с одноименными зарядами отталкиваются, с разноименными — притягиваются.
Протон имеет положительный заряд, электрон — отрицательный, нейтрон — электрически нейтрален.

Закон сохранения заряда

закон сохранения заряда — krūvio tvermės dėsnis statusas T sritis fizika atitikmenys: angl. charge conservation law; law of conservation of electric charge vok. Erhaltungssatz der elektrischen Ladung, m; Ladungserhaltungssatz, m rus. закон сохранения заряда, m; закон… … Fizikos terminų žodynas

Закон сохранения заряда — закон сохранения электрического заряда закон, согласно которому алгебраическая сумма электрических зарядов всех частиц изолированной системы не меняется при происходящих в ней процессах. Электрический заряд любой частицы или системы частиц… … Концепции современного естествознания. Словарь основных терминов

Сила и тут изменяется обратно пропорционально квадрату расстояния, но разница в величине электрических сил и сил тяготения поразительна. Пытаясь установить общую природу тяготения и электричества, мы обнаруживаем такое превосходство электрических сил над силами тяготения, что трудно поверить, будто у тех и у других один и тот же источник. Нельзя говорить, что одно действует сильнее другого, ведь все зависит от того, какова масса и каков заряд.

Интересно, что у различных законов физики есть некоторые общие черты. Вспомним закон тяготения. Сила гравитации также обратно пропорциональны квадрату расстояния, но уже между массами. И невольно возникает мысль, что в этой закономерности таится глубокий смысл. До сих пор никому не удалось представить тяготение и электричество, как два разных проявления одной и той же сущности.

Строгая формулировка закона сохранения электрического заряда возникла только после открытия факта взаимной превращаемости элементарных частиц материи: в электрически изолированной системе тел алгебраическая сумма зарядов всех тел остаётся постоянной:

Внесём сначала одну из них внутрь полого шара электрометра и убедимся, что он зарядился. Снимем заряд с электрометра, прикоснувшись к нему рукой, и внесём внутрь шара вторую пластинку. Стрелка электрометра отклонилась на такой же угол, что и в прошлый раз. Это убеждает нас в том, что каждая из пластинок действительно заряжается при трении друг о друга. А теперь внесём внутрь шара одновременно обе заряженные пластинки — электрометр не обнаруживает заряда — его стрелка не отклоняется.

Закон сохранения электрического заряда. Опыт с электризацией пластин доказывает, что при электризации трением происходит перераспределение имеющихся зарядов между телами, до этого нейтральными. Небольшая часть электронов переходит с одного тела на другое. При этом новые частицы не возникают, а существовавшие ранее не исчезают.

Вам может понравиться =>  Льготы Пенсионерам На Проезд В Электричках В 20222022 Году В Курганской Области

Электризация тел и её проявления. Значительная электризация происходит при трении синтетических тканей. Снимая с себя рубашку из синтетического материала в сухом воздухе, можно слышать характерное потрескивание. Между заряженными участками трущихся поверхностей проскакивают маленькие искорки.

Закон сохранения электрического заряда

Данный факт установил и исследовал Майкл Фарадей. Однажды он возвел в своей лаборатории огромный полый металлический шар, к наружной поверхности которого подключил сверхчувствительный гальванометр. Размер шара позволял разместить внутри него целую лабораторию.

Есть у электрического заряда одно необычное свойство — он всегда изменяется порциями. Рассмотрим заряженную частицу. Ее заряд может быть равен, например, одной порции заряда или двум порциям заряда, минус одной или минус двум порциям. Элементарный (минимальный из реально существующих у долгоживущих частиц) отрицательный заряд имеет электрон.

Закон сохранения электрического заряда

Способы электризации тел, которые представляют собой взаимодействие заряженных тел, могут быть следующими:

  1. Электризация тел при соприкосновении. В этом случае при тесном контакте небольшая часть электронов переходит с одного вещества, у которого связь с электроном относительно слаба, на другое вещество.
  2. Электризация тел при трении. При этом увеличивается площадь соприкосновения тел, что приводит к усилению электризации.
  3. Влияние. В основе влияния лежит явление электростатической индукции, то есть наведение электрического заряда в веществе, помещённом в постоянное электрическое поле.
  4. Электризация тел под действием света. В основе этого лежит фотоэлектрический эффект, или фотоэффект, когда под действием света из проводника могут вылетать электроны в окружающее пространство, в результате чего проводник заряжается.

Многочисленные опыты показывают, что когда имеет место электризация тела, то на телах возникают электрические заряды, равные по модулю и противоположные по знаку.

Взаимодействие тел, имеющих заряды одинакового или разного знака, можно продемонстрировать на следующих опытах. Наэлектризуем эбонитовую палочку трением о мех и прикоснёмся ею к металлической гильзе, подвешенной на шёлковой нити. На гильзе и эбонитовой палочке распределяются заряды одного знака (отрицательные заряды). Приближая заряженную отрицательно эбонитовую палочку к заряженной гильзе, можно увидеть, что гильза будет отталкиваться от палочки (рис. 1.2).

Известно, что одноименные заряды отталкиваются, разноименные – притягиваются. Далее, если поднести заряженное тело (с любым зарядом) к легкому – незаряженному, то между ними будет притяжение – явление электризации легкого тела через влияние. На ближайшем к заряженному телу конце появляются заряды противоположного знака (индуцированные заряды) это явление называется электростатической индукцией.

Опыт показывает, что возникновение заряда на любом теле сопровождается появлением заряда такой же величины, но противоположного знака на другом теле. Например, при трении стеклянной палочки о шелк заряжаются оба тела: палочка отрицательно, шелк положительно.

Сформулируйте Закон Сохранения Электрического Заряда Приведите Примеры, Подтверждающие Этот Закон Всегда Ли Справедлив Закон Сохранения Электрического Заряда?

Элементарные частицы могут иметь эл. заряд, тогда они называются заряженными;
— взаимодействуют друг с другом с силами, которые зависят от расстояния между частицами, но превышают во много раз силы взаимного тяготения (это взаимодействие называется электромагнитным).

Вам может понравиться =>  Аварийный Запас Оборудования Рп 10кв Справочник

Электрический заряд — физическая величина, определяет интенсивность электромагнитных взаимодействий.
Существует 2 знака эл.зарядов: положительный и отрицательный.
Частицы с одноименными зарядами отталкиваются, с разноименными — притягиваются.
Протон имеет положительный заряд, электрон — отрицательный, нейтрон — электрически нейтрален.

Закон сохранения электрического заряда

Электрический заряд обладает также свойством инвариантности. Это означает, что величина заряда тела (частицы) не изменяется при переходе от одной инерциальной системы отсчета к другой, т. е. не зависит от скорости движения заряда. Инвариантность заряда подтверждается фактом нейтральности атомов и молекул. Если бы заряды зависели от скорости их движения (а скорость движения электронов в атомах и молекулах много больше скорости движения ядер, а значит, скорости протонов), то нарушалась бы нейтральность замкнутой системы (атома, молекулы). Однако нейтральность атомов и молекул доказана экспериментально с большой точностью.

Поток вектора является алгебраической величиной: зависит не только от конфигурации поля , но и от выбора направления . Для замкнутых поверхностей за положительное направление нормали принимается внешняя нормаль, т.е. нормаль, направленная наружу области, охватываемой поверхностью.

Закон сохранения заряда выполняется абсолютно точно. На данный момент его происхождение объясняют следствием принципа калибровочной инвариантности [1][2]. Требование релятивистской инвариантности приводит к тому, что закон сохранения заряда имеет локальный характер: изменение заряда в любом наперёд заданном объёме равно потоку заряда через его границу. В изначальной формулировке был бы возможен следующий процесс: заряд исчезает в одной точке пространства и мгновенно возникает в другой. Однако такой процесс был бы релятивистски неинвариантен: из-за относительности одновременности в некоторых системах отсчёта заряд появился бы в новом месте до того, как исчез в предыдущем, а в некоторых — заряд появился бы в новом месте спустя некоторое время после исчезновения в предыдущем. То есть был бы отрезок времени, в течение которого заряд не сохраняется. Требование локальности позволяет записать закон сохранения заряда в дифференциальной и интегральной форме.

При более высоких энергиях, однако, электрически заряженные элементарные частицы начинают вступать во взаимодействия друг с другом, и проследить за соблюдением закона сохранения электрического заряда становится значительно сложнее, однако он выполняется и в этом случае. Например, при реакции спонтанного распада изолированного нейтрона происходит процесс, который можно описать следующей формулой:

Одним из полезнейших приемов в физике является выявление совокупных (суммарных) свойств системы, которые не изменяются ни при каких изменениях ее состояния. Такие свойства, выражаясь научным языком, являются консервативными, поскольку для них выполняются законы сохранения. Любой закон сохранения сводится к констатации того факта, что в замкнутой (в смысле полного отсутствия «утечки» или «поступления» соответствующей физической величины) консервативной системе соответствующая величина, характеризующая систему в целом, со временем не изменяется.

Adblock
detector